
How	are	great	products	created?		
[pause	about	2	seconds]	
	
To	develop	a	great	small	product,	we'd	sit	together	with	our	team	and	the	customer,	give	
them	a	new	version	every	few	minutes,	and	work	together	on	the	technology	to	solve	their	
problems.		You	already	know	this	is	the	best	way	to	develop	small	products.
	
But	what	usually	happens	with	large	product	development?		
	
Typically	we	get	boring	specifications	from	an	internal	department,	then	hand	over	our	
work	to	another	internal	department.		
	
We	interact	with	managers	instead	of	real	customers,	don't	have	much	say	in	the	process,	
don't	have	much	effect	on	the	whole	product,	and	lack	a	sense	of	purpose.		
	
We	might	even	believe	we're	doing	Scrum	or	some	other	Agile	methods,	but	our	
organization’s	inability	to	learn	and	adapt	to	reality	will	bite	us	sooner	or	later.			
[pause	about	2	seconds]	
	
What	was	better	about	small	scale	development?
	
Our	approach	was	customer	centric.		We	saw	the	whole	product	at	once.		We	had	minimal	
process,	and	we	had	effective	reality	checks	about	the	product	and	our	way	of	working.		It	
was	natural.		
[pause	about	2	seconds]	
	
Is	it	possible	to	take	what	works	so	naturally	in	small	scale	development	and	apply	it	to	
large	scale	development?
	
This	question	has	driven	Craig	Larman	and	Bas	Vodde	[pronounced	Bus]	for	over	a	
decade.		[Bas	wrote	“Better	not	try	to	pronounce	my	name	correctly	as	it	is	even	more	
wrong	than	the	typical	English	pronunciation.	(last	name,	that	is.	First	name	is	ok)”]		It's	led	
to	hundreds	of	experiments	and	the	formulation	of	LeSS.
	
LeSS	is	a	simple	framework	for	scaling	agile	development	using	these	principles	and	some	
others.			
	
LeSS	has	been	used	with	groups	of	12	people,	hundreds	of	people,	and	thousands	of	people	
on	products	from	banking	to	telecom,	games	to	radar	systems.

How	does	LeSS	work?	LeSS	is	multi-team	Scrum.		
	
There's	one	Product	Owner	providing	vision	and	one	adjustable	prioritized	list	of	customer	
centric	items,	the	Product	Backlog.	

We	want	one	integrated,	shippable	product	increment	every	Sprint	–	every	1-4	weeks.	

Multiple	teams	develop	this	product	one	shared	Sprint	at	a	time.	

Development	is	iterative	and	incremental.	

Each	Sprint	starts	with	Sprint	Planning	1,	a	short	shared	event	where	each	team	selects	
features	from	the	top	of	the	Product	Backlog	that	they	will	implement	during	the	Sprint.
	
That's	followed	by	Sprint	Planning	2,	where	the	teams	discuss	their	strategies	for	
developing	their	features.

During	the	Sprint,	each	self-managing	team	develops	the	features	they	selected while	
collaborating	and	continuously	integrating	with	the	other	teams	on	the	Potentially	
Shippable	Product	Increment.
	
Coordination	outside	the	team	is	now	a	team	responsibility,	so	there	are	no	assigned	
coordinators.

Halfway	through	the	Sprint,	teams	briefly	pause	the	current	Sprint	work	for	Product	
Backlog	Refinement	--	collaboration	with	customers	and	end	users	to	clarify	work	for	
future	Sprints.	By	connecting	teams	to	customers	we	free	up	the	Product	Owner	for	vision	
and	prioritization.

We	have	one	Sprint	Review,	a	shared	session	where	teams	and	customers	explore	what	
was	done	and	determine	the	best	next	increment	to	develop.

Each	team	retrospects	to	inspect	and	adapt	its	own	way	of	working.			
	
We	want	teams	to	own	their	methods	and	processes,	not	rent	them.		Without	ownership,	
there	can	be	no	continuous	improvement.		And	in	LeSS	we	don't	stop	with	the	team	
retrospectives.

Teams,	Product	Owner,	Scrum	Masters,	and	management	use	the	Overall	Retrospective to	
explore	the	systemic	and	organizational	obstacles	that	prevent	higher	value	delivery.		Use	
LeSS	to	inspect	and	adapt	the	entire	organization.	
	
Then	they	repeat	the	whole	cycle,	experimenting	and	making	wiser	mistakes	each	time.	

When	we	have	more	than	8	teams,	we	do	something	similar	called	LeSS	Huge,	still	targeting	
one	shippable	product	every	Sprint.

So	that's	the	LeSS	Framework,	just	a	few	rules	you	can	learn	in	a	few	minutes.	
	
[pause	about	2	seconds]	
	
But	it	won't	work	in	your	organization!	
[record	scratch]	

Not	the	way	your	organization	is	now.		

Your	organization	would	have	to	change	into	one	that	allows	it	to	work.		This	isn't	quick	or	
easy.	

You	and	your	organization	are	currently	designed	to	resist,	undermine,	and	neutralize	any	
steps	toward	real	agility.	
	
[pause	about	2	seconds]	
	
The	few	rules	that	LeSS	has	are	impactful,	with	far	reaching	implications.		Adopting	LeSS	
can	take	years	of	stripping	away	the	existing	organizational	rules,	processes,	structure,	and	
habits.	
	
LeSS	adoptions	aren’t	just	process	changes	or	roles	added	to	your	existing	organizational	
structure.		You've	already	seen	Agile	labels	applied	to	existing	habits	with	no	real	change.	
LeSS	adoptions	go	deeper,	challenging	conventional	wisdom	about	projects,	products,	
roles,	technical	practices,	and	management	practices.	

We	allow	agility	to	work	by	changing	structure	and	policy.	For	example,	the	teams	must	be	
cross	functional,	which	means	they	don't	only	code	and	test.		They	also	include	software	
design/architecture	skills, business	domain	knowledge,	and	UX/UI	design	skills.		
	
The	teams	are	responsible	for	requirements	clarification	with	the	customers	and	end	users.	
	
The	teams	also	must	be	feature	teams,	which	means	they	can	develop	end-customer	centric	
features,	not	just	internal	components.	LeSS	teams	span	components	and	work	in	a	shared	
code	environment.	
	
[pause	about	2	seconds]	

Organizations	often	try	to	solve	immediate	problems	by	adding	complexity.		For	example,	
let's	say	our	product	crashed	in	production	because	a	team	neglected	to	run	a	test.		My	first	
reflexes	as	a	manager	would	be	to	impose	prescriptive	process	steps	on	the	teams,	assign	
someone	to	a	new	specialized	role,	or	form	a	new	department	to	prevent	this	error	in	the	
future.		But	all	three	of	these	quick	fixes	can	exacerbate	the	underlying	problems	by	
reducing	team	responsibility.			

Giving	responsibilities	to	processes,	specialized	roles,	or	other	departments	takes	
responsibilities	away	from	the	team. Companies	wind	up	with	employees	who	are	just	
mindless	zombies.

We	believe	in	removing	that	complexity	instead:	more	with	less.

More	with	less	also	discourages	things	like	handoffs,	preparation	Sprints,	stabilization	
Sprints,	so-called	"dependencies",	separate	analysis	groups,	separate	architects,	and	
separate	queues	for	each	team.

In	LeSS,	Scrum	Masters	and	management	help	the	teams	learn.		Management	shifts	focus	
from	direct	command	to	improving	the	capability	of	the	development	system.

In	our	experience,	the	LeSS	framework	is	the	minimum,	barely	sufficient	structure	that	
product	groups	need	to	take	ownership,	gain	a	whole	product	view,	and	optimize	
organizations	for	value	delivery	and	flexibility.		

You	can	learn	about	the	experimental	mindset	(and	also	over	500	experiments)	that	help	
inform	the	framework,	guides	with	strong	recommendations	about	how	to	apply	it,	and	
more	about	the	10	principles	we	touched	on.		There's	also	us,	a	growing	community	of	
practitioners	and	coaches.

We	invite	you	to	move	away	from	life-sucking	industrial-age	machine	organizations	toward	
human,	purposeful	organizations	where	work	can	be	fun.

It	won't	be	easy,	quick,	or	painless.		But	if	you	work	at	it,	you	can	simplify	your	
organization,	increase	your	adaptability	to	changing	business	conditions,	remove	
unnecessary	drudgery,	and	unleash	the	potential	your	organization	had	all	along.		

		

	

	

	
	
	

